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Abstract 
This paper presents various analyses of computational behavior, 
namely the number of datapath operations and memory access, on the 
core profile level 2 (CPL2) of MPEG-4 Video standard. These 
analyzed data exploit the load distribution and mode selection of the 
video system. The exploration of data-flow behavior and its derived 
computation of MPGE-4 video processing algorithms will then drive 
through an efficient architecture design. 

I. Introduction 
In the recent years, visual communication becomes very popular and 
has attracted much attention of researchers as well as customers. 
Many advanced digital video standards, such as H.263 [ 11: MPEG- I 
[2];  MPEG-2 [3], make visual communication become more practical. 
Lately, rapid evolution of digital multimedia technology directs the 
multimedia communication service to provide more flexible and 
powerful functions. MPEG-4 [4] standard is undoubtedly the 
emerging standard for such multimedia communication trend. In 
comparison of MPEG- 1 and MPEG-2 standards, MPEG-4 standard 
video part (MPEG-4 Video) is not only to provide a high efficient 
video coding scheme for transmission but also to represent more 
active multimedia data with the capability of content-based interactive, 
universal access and error robustness. 

In MPEG-4 Video standard, five different profiles are currently 
defined to support the coding of various video formats from QCIF to 
large size video (1920x1088) at a transmission rate ranging from 
several kbitsis up to 38.4 Mbits/s. Different algorithms and coding 
modes can be applied in different applications. This implies that high 
degree of flexibility and more computation power will be demanded 
for delivering MPEG-4 video. It could demand more processing 
capability than that today's processors can provide for real-time CPL2 
applications or higher specification. A powerful computing engine 
with proper flexibility is thus required for those applications. 
Hardwire acceleration (coprocessor) provides a good solution to 
achieve better computing capability for video applications since data 
parallelism can be employed. In addition to applying the data 
parallelism technique, task-pipelining technique can be used by 
adopting the multithread architecture [ 5 ] .  

This paper will discuss the computational behavior of MPEG-4 Video 
codec from the system point of view. Computational requirements and 
behavior of data transfer for a CPL2 MPEG-4 Video codec are 
analyzed first. Based on the analyzed results, design decisions for 
efficient codec architecture are derived in order to implement an 
efficient system architecture for MPEG-4 Video coding. 

11. MPEG-4 Video Codec. 
MPEG-4 Video employs a tool-based coding scheme that can support 
various visual communication systems by utilizing different profiles 
and levels [6]. Such coding scheme allows MPEG-4 a better 
adaptation to applications of different source data nature and any 
possible channel environments. Besides, audioivisual contents from 
different sources can be coded with different scenarios (profiles): 
quality and dimensionality. This content-based concept allows scene 

producers to create high flexible composed video scenes and allows 
users a high degree of interactivity with video contents. Each video 
object (VO) in a video scene can be divided into many time instances. 
called video object planes (VOPs). The individual VOP is allowed to 
have arbitrary shapes. As a consequence. the shape of an object has to 
be transmitted in addition to its texture. Figure 1 and 2 show the 
general video encoder and decoder structure for MPEG-4 separately. 
It is observed that the shape coding tool is provided in this structure 
beyond the conventional hybrid coding scheme. 
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Figure 1 .  General structure of MPEG-4 Video Encoder 
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pre 2 .  General structure of MPEG-4 Video Decoder 

Due to the consideration of regularity, the implementation of MPEG-4 
video Codec usually adopts macroblock (MB)-based coding scheme 
to support the coding of both rectangular video frames and arbitrarily 
shaped video objects. It is quite reasonable to employ the MB-based 
approach for conventional video frame coding. However, for the 
coding of arbitrarily shaped video objects, special processing is 
required to fit the MB-based approach. In the following, the essential 
processing for coding arbitrarily shaped video objects are briefly 
described. 

A. Shape Coding 
MPEG-4 video adopts the MB-based content-based arithmetic 
encoding (CAE: [7]) method and MB-based motion estimation to 
encode the binary shape information of video objects. For coding the 
shape of I-VOP; intra-mode CAE is applied for all the boundary 
blocks. While coding the shapes of P-VOP or B-VOP, however, 
before applying the inter-mode CAE, motion estimation for binary 
shape is performed to find the best matched macroblock such that 
inter-CAE could achieve higher compression performance. 

B. Motion EstimationKompensation & Texture 
Coding 
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MPEG-4 video adopts a standard 8 x 8 or 16 x 16 pixels MB-based 
motion estimation and compensation algorithm to perform the 
temporal prediction coding for inter-frame video sequences. 
Moreover, several advanced prediction techniques, such as advanced 
prediction (AP) mode, overlapped block motion compensation 
(OBMC), unrestricted motion vector (UMV), can be optionally 
activated. Then, motion vectors and prediction errors are coded by 
VLC code. For arbitrarily shaped video objects, motion-repetitive 
padding is applied prior to ME for arbitrarily shaped objects. 

The texture information of intra-frames and prediction error of inter- 
frames are coded using the conventional 8 x 8 block-based DCT. In 
addition to the intra prediction of DC coefficients, advanced intra 
block prediction mode (DC/AC prediction) can be applied to remove 
the remaining redundancy between the DCT coefficients of 
neighbored blocks. 

111. Performance and Complexity Analysis of 
MPEG-4 Video Codec. 

MPEG-4 video codec involves complex data-intensive algorithms. 
Namely, a very large amount of data will be processed with some 
similar operations. For this: datapath computation capability and 
efficiency of data transfer will dominate the system performance of 
MPEG-4 video codec. In order to understand its computational 
behavior, we setup a computational model such that computation 
behavior of MPEG-4 Video codec can be modeled and analyzed. 
Besides, computer profiling is also employed as a reference for our 
behavior analysis. This run-time profiling has been performed on the 
MoMuSys Video FDIS Version 1.0 C implementation [SI. The 
analyzed results and discussions are describes as follows: 

A. Behavior Model 
In order to apply the model-based analysis on MPEG-4 video codec, a 
reference processor model has to be setup, 

1-1 I -+T 
Figure 3.  Proposed basic compuatation model 

As shown in Figure 3: basically it is a simple computation model 
composed of several function units, each which comprises a data 
processor (DP) and a memory module (local memory. LM and global 
memory, GM). The computational behavior can be modeled as 
memory access (data transfer between GM and LM) and data 
processing. Based on this model, we can divide the MPEG-4 video 
codec into several processing units, each that can deal with one major 
task of MPEG-4 video coding, such as DCT/IDCT: VLCNLD, MC, 
ME ... etc. After such a virtual machine has been setup, the 
computational behavior. i.e.: the number of data-path operations, 
memory access and memory-addressing operations can be calculated 
by directly analyzing the computing flow of algorithms. 

Let us take the inverse quantization (IQ) tool for an example to show 
how to perform the proposed computational analysis. Figute 4 shows 
the IQ process adopted in MPEG-4. In the first step of IQ process, the 
Inverse Quantization Arithmetic. two different quantization methods 
can be used. Here the MPEG-like method is analyzed. The following 
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shows the formulas for the IQ procedure. 
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Figure 4. Procedure of inverse quantization defined in MPEG-4 
standard 

Inverse Quantization (MPEG): 
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Mismatch control: 
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F[vIu] = F' [ v ] [ u ]  for all U ,  v except U = v = 7 
I F' U1171 if sum is odd 

F'[7][7]-1 if F'[7][7] isodd 

F'[71[7]+1 if F'[7][7]iseven 
F[7X71 =I{ } if sum is even 

In the inverse quantization step, each coefficient in an 8x8'block has 
to be checked if its value is equal to zero. If so: the reconstructed 
value is equal to zero, or further calculation has to be perfoimed. In 
the worst case analysis, the further calculation spends two data-path 
operations for decision, one for absolution: two for multiplication, 
two for shift, one for addition and one for table-lookup for each AC 
coefficient. Low frequency component (DC coefficient) is 
reconstructed by using one multiplication operation. In the second 
step, each pixel in the 8x8 block needs two more decision operations 
for saturation adjustment. Eventually, each block needs 67 extra 
operations for mismatch control in the final step. According to the 
above analysis, total data-path operations required by IQ process for 
CPLZ decoding are 99.93456 MOPS. 

Then, we analyze the data transfer behavior while performing the 
method 1 of IQ process. A weighting quantization matrix (64 entries) 
and the quantizer scale, which are decoded by VLD processing unit, 
are loaded from GM. Assume the bit-width of these data is 16-bit: 
then totally it has to transfer 65 X 2 bytes to LM of IQ processing unit 
from GM. In Saturation, each component of the 8x8 block has to be 
checked if it exceeds the legal range, so 64 x 2 bytes data are loaded 
from GM to LM (read) and 64 x 2 bytes data are stored back to GM 
(write). Such situation is the same with the Mismatch Control. In fact, 



the data leave in LM can be reused in these processing, which 
improves the performance of memory access. We will talk about this 
more in the section IV. Figure 5 summarizes the analyzed results of 
computational behavior of IQ process. Similarly, the other tools can 
be analyzed in the same way. 

I I 

Core Profile Level 2 (CPLZ) 
P Typical Visual Session Size CIF 
P Maximum number of MBlsec 23760 
P Max bitrate PMbitls 

Datapath Operations (DP): 
0 AC (each component] 2 decide, 1 abs. 2MPY. 2 Shift, 1 Add, 1 

0 DC 1 MPY 
0 Saturation (each component) 2 decision 
0 Mismatch (one block] 67 operations 
0 Total (one block] 701 operations 
CPLZ 

table lookup 

701 X 6 X 23760 = 99 93456 MOPS 

Memory Access (LM<->GM): 

0 Saturation (block) : 64 x '2 bytes 
0 Mismatch Control (block] : 64 x 2 bytes 
0 Total (black) : 193 x 2 = 386 bytes 

Figure 5 .  Computational behavior of IQ method 1 based on proposed 
computation model 

By employing this methodology, the computational cost can be easily 
estimated, including datapath operations and memory access. Besides, 
behavior of video coding algorithms becomes clear and easy to model. 
Thus: computational requirement of a real-time CPL2 MPEG-4 video 
codec could be determined based on this analysis. The results of 
computational analysis of MPEG-4 video codec are summarized in 
Table 1 and 2. 

B. Run-time Profiling 
The software run-time profiling of the non-optimized Momusys C 
implementation is performed on a general purpose RISC processor: 
SUN UltraSparc2. GNU profiling tool, gprof. is employed to obtain 
the statistic of run-time information. In this non-optimized 
implementation, the sprial-search algorithm with SSDA [9] for 
motion estimation tool is adopted. It is simulated that the sprial-search 
with SSDA can achieve around 15%-3O% gain. However: this 
optimized search algorithm still dominates the computation of video 
coding. (can not real-time) It can be observed that this tool spends 
most of the execution time, about 85% or even higher. This implies 
that more efficient algorithms or architectures are required. 

IV. Implementation Consideration 
As mentioned before, programmability is strongly demanded for 
supporting various functionality as well as system parameters. Thus, 
software-oriented implementations should be more suitable for 
realizing a practical MPEG-4 system. Namely, employing 
programmable DSPs could be a feasible choice for real 
implementations. However, the computational requirements for 
MPEG-4 Video codec exceeds the capability that general-purpose 
programmable DSP processors can provide today. This strict 
requirement on computation leads to the development of very 
powerhl computing engines whose, performance is much improved 
by applying several advanced design concepts, such as SIMD [IO], 
VLIW [ 1 I], ... etc. In these design classics, parallel-computing 
techniques at various levels are employed in order to achieve higher 
computation performance. Besides: hardware acceleration 
(coprocessor) is another good choice for performance enhancement. 

In the near future, visual communication will become further 
functionality-rich. The need of high complexity algorithms for 
achieving those fantasy functionalities will increase. This requires the 

development of powerful programmable architecture for supporting 
more flexibility. Accordingly, DSP design should be scalable for 
future use. On the other hand, however, several conventional video 
coding tools are more specified to some dedicated computation, such 
as Motion Estimation, DCTIIDCT.. .etc. Moreover, these coding tools 
are rather computation-intensive. Until now, the computational 
requirements of these coding tools still dominate the entire 
computation load. Namely, the system bottleneck would take place 
over here without optimal design considerations. Design efforts 
should be spent on these computation-intensive tasks to achieve the 
maximum optimization. By considering the computation behavior of 
these tasks, hardware acceleration could be the best solution for 
implementing these coding tools in terms of system performance. 
Taking both programmability and computational requirements into 
considerations, system architecture for MPEG-4 should be configured 
as two major computation units: a programmable DSP core and a 
dedicated engine to achieve its maximum performance. Figure 7 
shows the proposed system architecture of a multimedia processor 
that targets MPEG-4 Video coding. The dedicated engine can be 
optimally designed by applying the design techniques, such as data- 
reuse and parallel computing, so as to achieve better performance. 
Table 3 shows different speedups for Motion Estimation tool by 
different architectures respectively. Since the full-search Motion 
Estimation algorithm has very good data locality, data-reuse can be 
applied very efficiently on the systolic array architecture [12]. Thus, 
they can achieve very much speedup. Generally speaking, the systolic 
array architecture can be treated as a SIMD processor. On the other 
hand, although several narrow-scene SIMD DSP processors [ IO]  have 
been reported that they can achieve much better performance on some 
video algorithms, such as MC, DCT/IDCT, the speedup is still not 
enough for real-time full-search Motion Estimation with large search 
range. 

Memory configuration is another important issue for the system 
design. Therefore; the features of data storage and transfer for video 
processing tools in MPEG-4 core profile are analyzed so as to design 
efficient memory system. Table 4 shows the data transfer based on 
local memory storage analysis for the tools used in MPEG-4. A few 
tools require large amount of memory storage and data transfer 
including: Motion Estimation tool, DCTiIDCT tool, Motion 
Compensation tool and Padding tool. It's clear that if the sufficient 
local storage is provided, some data transfer overhead can be removed 
since several tools have data locality within an 8x8 block. Table 4 
also shows that motion estimation tool dominates the cost of data 
transfer in MPEG-4 video processing. This leads to very much 
memory bandwidth and storage to be consumed. Hierarchical 
memory system can be employed to remove this problem. For the 
full-search motion estimation with macroblock size N and search 
range p: the minimum intermediate local buffer size to achieve 
minimum main memory access for previous frame data can be 
derived as the following equations. 

Frame memory access: 3xH(width)xV(height) 
Iniermediaie buffer: m a {  (2p- l)x(2p+N- 1); (2N- I)x(2p+N- I ) }  

This can much reduce the main memory access and thus reduce the 
heavy traffic of system bus. 

Based on the various analyses to MPEG-4 video processing described 
before, we think that efficient system architecture for MPEG-4 video 
coding should be configured as follows. A powerful dedicated 
coprocessor for full-search motion estimation, a parallel DSP core for 
support flexible functions as well as on-chip memories as iocal data 
buffers to reduce access from large frame memory. 

V. Conclusion 
In this paper, the computational behavior of MPEG-4 video codec is 
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analyzed by utilizing the proposed behavior model and runtime 
profiling. Based on the computational behavior analyses and data 
flow exploration, the design space for efficient architecture, including 
computing units and memory sub-systems is explored. A hybrid 
system architecture is considered to be the most efficient architecture 
for MPEG-4 Video coding since the maximum optimization is applied 
on it based on the complete exploration of computation behavior of 
the MPEG-4 Video coding. 

Dedicated P a r a l l e l  Engine 
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Required computation 
(MIPSiMcycles) 

Table 1. Computational behavior of MPEG-4 video encoder 
tools (CPL2) 

2395.95 4716.35 0.09569 (Mcycles) 
18663.093 
(Mcycles) 

Speedups 7.78 4 195 1 

IDCT I 57.743041 18.24768 
IS/IQ 18.247681 0 

lS/Q I 18.247681 0 
VLC I 0.25( 0.25 
VLD 0.2sl 0.25 

[Padding I 15.20611 15.2064j 

Table 4. Amount of data transfer for MPEG-4 video 
processing in different models 

Table 3 Speedups of different architectures for full-search motion 
estimation 
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