
CAS 2000 - IEE lnte atiqnal Sy o ium n ircuits and p y . My28-31 I pf%fjjpTv;$& Perrormance AnaFysis an% WrcRi'Zecture va ua ion o
Codec System

Hao-Chieh Chang, Liang-Gee Chen, Mei-Yun Hsu and Yung-Chi Chang
DSP/IC Design Lab, Department of Electrical Engineering

National Taiwan University, Taipei, Taiwan, R.O.C.

Abstract
This paper presents various analyses of computational behavior,
namely the number of datapath operations and memory access, on the
core profile level 2 (CPL2) of MPEG-4 Video standard. These
analyzed data exploit the load distribution and mode selection of the
video system. The exploration of data-flow behavior and its derived
computation of MPGE-4 video processing algorithms will then drive
through an efficient architecture design.

I. Introduction
In the recent years, visual communication becomes very popular and
has attracted much attention of researchers as well as customers.
Many advanced digital video standards, such as H.263 [11: MPEG- I
[2]; MPEG-2 [3], make visual communication become more practical.
Lately, rapid evolution of digital multimedia technology directs the
multimedia communication service to provide more flexible and
powerful functions. MPEG-4 [4] standard is undoubtedly the
emerging standard for such multimedia communication trend. In
comparison of MPEG- 1 and MPEG-2 standards, MPEG-4 standard
video part (MPEG-4 Video) is not only to provide a high efficient
video coding scheme for transmission but also to represent more
active multimedia data with the capability of content-based interactive,
universal access and error robustness.

In MPEG-4 Video standard, five different profiles are currently
defined to support the coding of various video formats from QCIF to
large size video (1920x1088) at a transmission rate ranging from
several kbitsis up to 38.4 Mbits/s. Different algorithms and coding
modes can be applied in different applications. This implies that high
degree of flexibility and more computation power will be demanded
for delivering MPEG-4 video. It could demand more processing
capability than that today's processors can provide for real-time CPL2
applications or higher specification. A powerful computing engine
with proper flexibility is thus required for those applications.
Hardwire acceleration (coprocessor) provides a good solution to
achieve better computing capability for video applications since data
parallelism can be employed. In addition to applying the data
parallelism technique, task-pipelining technique can be used by
adopting the multithread architecture [5] .

This paper will discuss the computational behavior of MPEG-4 Video
codec from the system point of view. Computational requirements and
behavior of data transfer for a CPL2 MPEG-4 Video codec are
analyzed first. Based on the analyzed results, design decisions for
efficient codec architecture are derived in order to implement an
efficient system architecture for MPEG-4 Video coding.

11. MPEG-4 Video Codec.
MPEG-4 Video employs a tool-based coding scheme that can support
various visual communication systems by utilizing different profiles
and levels [6]. Such coding scheme allows MPEG-4 a better
adaptation to applications of different source data nature and any
possible channel environments. Besides, audioivisual contents from
different sources can be coded with different scenarios (profiles):
quality and dimensionality. This content-based concept allows scene

producers to create high flexible composed video scenes and allows
users a high degree of interactivity with video contents. Each video
object (VO) in a video scene can be divided into many time instances.
called video object planes (VOPs). The individual VOP is allowed to
have arbitrary shapes. As a consequence. the shape of an object has to
be transmitted in addition to its texture. Figure 1 and 2 show the
general video encoder and decoder structure for MPEG-4 separately.
It is observed that the shape coding tool is provided in this structure
beyond the conventional hybrid coding scheme.

I

I I

Figure 1 . General structure of MPEG-4 Video Encoder

F

Shape information Shape
Decodino

1 Motion M Y 7 17;: 7
Decoding Compensation

Texlure VOP 1
DBCOdlnQ Buller

pre 2 . General structure of MPEG-4 Video Decoder

Due to the consideration of regularity, the implementation of MPEG-4
video Codec usually adopts macroblock (MB)-based coding scheme
to support the coding of both rectangular video frames and arbitrarily
shaped video objects. It is quite reasonable to employ the MB-based
approach for conventional video frame coding. However, for the
coding of arbitrarily shaped video objects, special processing is
required to fit the MB-based approach. In the following, the essential
processing for coding arbitrarily shaped video objects are briefly
described.

A. Shape Coding
MPEG-4 video adopts the MB-based content-based arithmetic
encoding (CAE: [7]) method and MB-based motion estimation to
encode the binary shape information of video objects. For coding the
shape of I-VOP; intra-mode CAE is applied for all the boundary
blocks. While coding the shapes of P-VOP or B-VOP, however,
before applying the inter-mode CAE, motion estimation for binary
shape is performed to find the best matched macroblock such that
inter-CAE could achieve higher compression performance.

B. Motion EstimationKompensation & Texture
Coding

0-7803-5482-6/99/$10.00 02000 IEEE

11-449

MPEG-4 video adopts a standard 8 x 8 or 16 x 16 pixels MB-based
motion estimation and compensation algorithm to perform the
temporal prediction coding for inter-frame video sequences.
Moreover, several advanced prediction techniques, such as advanced
prediction (AP) mode, overlapped block motion compensation
(OBMC), unrestricted motion vector (UMV), can be optionally
activated. Then, motion vectors and prediction errors are coded by
VLC code. For arbitrarily shaped video objects, motion-repetitive
padding is applied prior to ME for arbitrarily shaped objects.

The texture information of intra-frames and prediction error of inter-
frames are coded using the conventional 8 x 8 block-based DCT. In
addition to the intra prediction of DC coefficients, advanced intra
block prediction mode (DC/AC prediction) can be applied to remove
the remaining redundancy between the DCT coefficients of
neighbored blocks.

111. Performance and Complexity Analysis of
MPEG-4 Video Codec.

MPEG-4 video codec involves complex data-intensive algorithms.
Namely, a very large amount of data will be processed with some
similar operations. For this: datapath computation capability and
efficiency of data transfer will dominate the system performance of
MPEG-4 video codec. In order to understand its computational
behavior, we setup a computational model such that computation
behavior of MPEG-4 Video codec can be modeled and analyzed.
Besides, computer profiling is also employed as a reference for our
behavior analysis. This run-time profiling has been performed on the
MoMuSys Video FDIS Version 1.0 C implementation [SI. The
analyzed results and discussions are describes as follows:

A. Behavior Model
In order to apply the model-based analysis on MPEG-4 video codec, a
reference processor model has to be setup,

1-1 I -+T
Figure 3. Proposed basic compuatation model

As shown in Figure 3: basically it is a simple computation model
composed of several function units, each which comprises a data
processor (DP) and a memory module (local memory. LM and global
memory, GM). The computational behavior can be modeled as
memory access (data transfer between GM and LM) and data
processing. Based on this model, we can divide the MPEG-4 video
codec into several processing units, each that can deal with one major
task of MPEG-4 video coding, such as DCT/IDCT: VLCNLD, MC,
ME ... etc. After such a virtual machine has been setup, the
computational behavior. i.e.: the number of data-path operations,
memory access and memory-addressing operations can be calculated
by directly analyzing the computing flow of algorithms.

Let us take the inverse quantization (IQ) tool for an example to show
how to perform the proposed computational analysis. Figute 4 shows
the IQ process adopted in MPEG-4. In the first step of IQ process, the
Inverse Quantization Arithmetic. two different quantization methods
can be used. Here the MPEG-like method is analyzed. The following

11-450

shows the formulas for the IQ procedure.

Mismatc
Control

Inverse
Quantisation Saturatio
Arithmetic

quan-scale-code

W[WI rvir~i

Figure 4. Procedure of inverse quantization defined in MPEG-4
standard

Inverse Quantization (MPEG):

Saturation:

Mismatch control:

"=o .=o

F[vIu] = F' [v] [u] for all U , v except U = v = 7
I F' U1171 if sum is odd

F'[7][7]-1 if F'[7][7] isodd

F'[71[7]+1 if F'[7][7]iseven
F[7X71 =I{ } if sum is even

In the inverse quantization step, each coefficient in an 8x8'block has
to be checked if its value is equal to zero. If so: the reconstructed
value is equal to zero, or further calculation has to be perfoimed. In
the worst case analysis, the further calculation spends two data-path
operations for decision, one for absolution: two for multiplication,
two for shift, one for addition and one for table-lookup for each AC
coefficient. Low frequency component (DC coefficient) is
reconstructed by using one multiplication operation. In the second
step, each pixel in the 8x8 block needs two more decision operations
for saturation adjustment. Eventually, each block needs 67 extra
operations for mismatch control in the final step. According to the
above analysis, total data-path operations required by IQ process for
CPLZ decoding are 99.93456 MOPS.

Then, we analyze the data transfer behavior while performing the
method 1 of IQ process. A weighting quantization matrix (64 entries)
and the quantizer scale, which are decoded by VLD processing unit,
are loaded from GM. Assume the bit-width of these data is 16-bit:
then totally it has to transfer 65 X 2 bytes to LM of IQ processing unit
from GM. In Saturation, each component of the 8x8 block has to be
checked if it exceeds the legal range, so 64 x 2 bytes data are loaded
from GM to LM (read) and 64 x 2 bytes data are stored back to GM
(write). Such situation is the same with the Mismatch Control. In fact,

the data leave in LM can be reused in these processing, which
improves the performance of memory access. We will talk about this
more in the section IV. Figure 5 summarizes the analyzed results of
computational behavior of IQ process. Similarly, the other tools can
be analyzed in the same way.

I I

Core Profile Level 2 (CPLZ)
P Typical Visual Session Size CIF
P Maximum number of MBlsec 23760
P Max bitrate PMbitls

Datapath Operations (DP):
0 AC (each component] 2 decide, 1 abs. 2MPY. 2 Shift, 1 Add, 1

0 DC 1 MPY
0 Saturation (each component) 2 decision
0 Mismatch (one block] 67 operations
0 Total (one block] 701 operations
CPLZ

table lookup

701 X 6 X 23760 = 99 93456 MOPS

Memory Access (LM<->GM):

0 Saturation (block) : 64 x '2 bytes
0 Mismatch Control (block] : 64 x 2 bytes
0 Total (black) : 193 x 2 = 386 bytes

Figure 5 . Computational behavior of IQ method 1 based on proposed
computation model

By employing this methodology, the computational cost can be easily
estimated, including datapath operations and memory access. Besides,
behavior of video coding algorithms becomes clear and easy to model.
Thus: computational requirement of a real-time CPL2 MPEG-4 video
codec could be determined based on this analysis. The results of
computational analysis of MPEG-4 video codec are summarized in
Table 1 and 2.

B. Run-time Profiling
The software run-time profiling of the non-optimized Momusys C
implementation is performed on a general purpose RISC processor:
SUN UltraSparc2. GNU profiling tool, gprof. is employed to obtain
the statistic of run-time information. In this non-optimized
implementation, the sprial-search algorithm with SSDA [9] for
motion estimation tool is adopted. It is simulated that the sprial-search
with SSDA can achieve around 15%-3O% gain. However: this
optimized search algorithm still dominates the computation of video
coding. (can not real-time) It can be observed that this tool spends
most of the execution time, about 85% or even higher. This implies
that more efficient algorithms or architectures are required.

IV. Implementation Consideration
As mentioned before, programmability is strongly demanded for
supporting various functionality as well as system parameters. Thus,
software-oriented implementations should be more suitable for
realizing a practical MPEG-4 system. Namely, employing
programmable DSPs could be a feasible choice for real
implementations. However, the computational requirements for
MPEG-4 Video codec exceeds the capability that general-purpose
programmable DSP processors can provide today. This strict
requirement on computation leads to the development of very
powerhl computing engines whose, performance is much improved
by applying several advanced design concepts, such as SIMD [IO],
VLIW [1 I], ... etc. In these design classics, parallel-computing
techniques at various levels are employed in order to achieve higher
computation performance. Besides: hardware acceleration
(coprocessor) is another good choice for performance enhancement.

In the near future, visual communication will become further
functionality-rich. The need of high complexity algorithms for
achieving those fantasy functionalities will increase. This requires the

development of powerful programmable architecture for supporting
more flexibility. Accordingly, DSP design should be scalable for
future use. On the other hand, however, several conventional video
coding tools are more specified to some dedicated computation, such
as Motion Estimation, DCTIIDCT.. .etc. Moreover, these coding tools
are rather computation-intensive. Until now, the computational
requirements of these coding tools still dominate the entire
computation load. Namely, the system bottleneck would take place
over here without optimal design considerations. Design efforts
should be spent on these computation-intensive tasks to achieve the
maximum optimization. By considering the computation behavior of
these tasks, hardware acceleration could be the best solution for
implementing these coding tools in terms of system performance.
Taking both programmability and computational requirements into
considerations, system architecture for MPEG-4 should be configured
as two major computation units: a programmable DSP core and a
dedicated engine to achieve its maximum performance. Figure 7
shows the proposed system architecture of a multimedia processor
that targets MPEG-4 Video coding. The dedicated engine can be
optimally designed by applying the design techniques, such as data-
reuse and parallel computing, so as to achieve better performance.
Table 3 shows different speedups for Motion Estimation tool by
different architectures respectively. Since the full-search Motion
Estimation algorithm has very good data locality, data-reuse can be
applied very efficiently on the systolic array architecture [12]. Thus,
they can achieve very much speedup. Generally speaking, the systolic
array architecture can be treated as a SIMD processor. On the other
hand, although several narrow-scene SIMD DSP processors [IO] have
been reported that they can achieve much better performance on some
video algorithms, such as MC, DCT/IDCT, the speedup is still not
enough for real-time full-search Motion Estimation with large search
range.

Memory configuration is another important issue for the system
design. Therefore; the features of data storage and transfer for video
processing tools in MPEG-4 core profile are analyzed so as to design
efficient memory system. Table 4 shows the data transfer based on
local memory storage analysis for the tools used in MPEG-4. A few
tools require large amount of memory storage and data transfer
including: Motion Estimation tool, DCTiIDCT tool, Motion
Compensation tool and Padding tool. It's clear that if the sufficient
local storage is provided, some data transfer overhead can be removed
since several tools have data locality within an 8x8 block. Table 4
also shows that motion estimation tool dominates the cost of data
transfer in MPEG-4 video processing. This leads to very much
memory bandwidth and storage to be consumed. Hierarchical
memory system can be employed to remove this problem. For the
full-search motion estimation with macroblock size N and search
range p: the minimum intermediate local buffer size to achieve
minimum main memory access for previous frame data can be
derived as the following equations.

Frame memory access: 3xH(width)xV(height)
Iniermediaie buffer: m a { (2p- l)x(2p+N- 1); (2N- I)x(2p+N- I) }

This can much reduce the main memory access and thus reduce the
heavy traffic of system bus.

Based on the various analyses to MPEG-4 video processing described
before, we think that efficient system architecture for MPEG-4 video
coding should be configured as follows. A powerful dedicated
coprocessor for full-search motion estimation, a parallel DSP core for
support flexible functions as well as on-chip memories as iocal data
buffers to reduce access from large frame memory.

V. Conclusion
In this paper, the computational behavior of MPEG-4 video codec is

11-45 1

analyzed by utilizing the proposed behavior model and runtime
profiling. Based on the computational behavior analyses and data
flow exploration, the design space for efficient architecture, including
computing units and memory sub-systems is explored. A hybrid
system architecture is considered to be the most efficient architecture
for MPEG-4 Video coding since the maximum optimization is applied
on it based on the complete exploration of computation behavior of
the MPEG-4 Video coding.

Dedicated P a r a l l e l Engine

Reference
“Video Coding for narrow telecommunication channels at < 64
kbitsis,” Ora$ [TU-TRecommendation H.263: July 1995.
Didier Le Gall. “MPEG: A Video Compression Standard for
Multimedia Applications,” Communications of the ACM. Vol.
34, No. 4: pp.46-58: April 1991
ISOIIECIJTCI/SC29/WG11 Draft CD 13818-2
Recommendation H.262 Committee Draft.
ISOiIEC JTC IiSC29iWG I I: N2502a, Generic Coding of
Audio-visual Objects: Visual 14496-2, Final Draji IS: Atlantic
City, Dec. 1998.
Jens P. Wittenburg, P. Pirsh and Gerald Meyer: “A
Multithreaded Architecture Approach to Parallel DSPs for High
Performance Image Processing Applications”, Proc. of 1EEE
Workshop on Signal Processing Systems, 1999.
ROB KOENEN, “Profiles and Levels in MPEG-4;Approach
and Overview”: MPEG HOME WEB: 1999

Proqrauunable DSP Core

I I I

Video Tool

Memory I/F, DMA Controller,
Central Controller (Scheduller)

I I

Data Transfer (LM<->GM) (MBytes)
Basic Model (LM for 8x8 block data

Local Memory hs!,
(FS,-16-+15)
Motion Comp.
CAE Encoding
CAE Decoding

13259.981 13259.981
36.3547 36.3547

778.56768 < 778.56768
12.1404 1.1404

I I I I I I

DCT I 57.74304 18.24168

N. Brady. F. Bossen and N. Murphy, “Context-based Arithmetic
Encoding of 2D Shape Sequences”, Proc. of IEEE Confen?nce
on Image Processing [lCIP), 1997
MPEG-4 VM software, European ACTS project MoMuSys,
Apr. 1999.
Tatsuji M., Hiroshi S.: Takashi M.: and Ichiro K.: “Real-‘Time
Software Video Codec with a Fast Adaptive Motion Vector
Sesrch”, Proc. of IEEE Workshop on Signal Processing Systems,
1999.
KOUHEI NADEHARA, HANNO LIESKE and ICHIRO
KURODA, “Software MPEG-2 Video Decoder on a 200-MHz;
Low Power Multimedia Microprocessor”, Proc. of IEEJ? Int.
Conf Acoustics, Speech, Signal Processing, Seattle, May. 1998
Dutta S.; Wolfe A., Wolf W.: OConnor K.J., “Design Issue for
Very-Long-Instruction Word VLSI Video Signal ‘Processors”:
VLSISignal Processing IX: IEEE Press, pp.95-104, 1996.
Jun-Fu Shen, Liang-Gee Chen, Hao-Chieh Chang and Tu-Chih
Wang, “Low Power Full-Search Block-Matching hllotion
Estimation Chip for H.263+ Video Coding”, Proc. of
International Symposium on Circuits and Systems [KCAS):
1999
Chang-Guo Zhou et.al, “MPEG Video Decoding with the
UltraSPARC Visual Instruction Set”, Compcon’95, 5-9 March
1995

Required computation
(MIPSiMcycles)

Table 1. Computational behavior of MPEG-4 video encoder
tools (CPL2)

2395.95 4716.35 0.09569 (Mcycles)
18663.093
(Mcycles)

Speedups 7.78 4 195 1

IDCT I 57.743041 18.24768
IS/IQ 18.247681 0

lS/Q I 18.247681 0
VLC I 0.25(0.25
VLD 0.2sl 0.25

[Padding I 15.20611 15.2064j

Table 4. Amount of data transfer for MPEG-4 video
processing in different models

Table 3 Speedups of different architectures for full-search motion
estimation

11-452

